Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S8: Winter 2025: Quiz 5

name: Y. Lamontagne

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work

Question 1. (3 marks each) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

a. If A and B are $n \times n$ matrices, if AB = -BA, and if n is odd, show that either A or B has no inverse.

Question 2. (3 marks) Let A and B be two 3×3 matrices such that det(A) = -2 and det(B) = 3. Find the following: det $((-2B^3)^{-1}(3A^3)^T adj(3A))$. = det $((-2B^3)^{-1})$ det $((3A^3)^T adj(3A))$

$$= \frac{1}{\operatorname{olet}((-2i)^{3})^{3}} \operatorname{olet}((3A^{3})^{7} \operatorname{olet}(adj(3A))^{3}$$

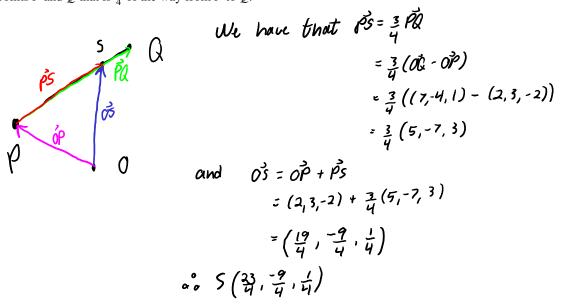
$$= \frac{1}{\operatorname{olet}(-2B^{3})} \operatorname{olet}(3A^{3})(\operatorname{olet}(3A))^{3}^{1}$$

$$= \frac{1}{(-2)^{3}\operatorname{olet}(B^{3})} \operatorname{olet}(A^{3})(3^{3}\operatorname{olet}A)^{2}$$

$$= \frac{1}{-8} (\operatorname{olet}B)^{3} \operatorname{olet}(A^{3})^{3} \operatorname{olet}(A)^{2}$$

$$= \frac{1}{-8} \operatorname{olet}(A^{3})^{3} \operatorname{olet}(A)^{3} \operatorname{olet}(A)^{2}$$

Question 3. (5 marks) Let P be the point (2,3,-2) and Q the point (7,-4,1). Only using vectors, find the point on the line segment connecting the points P and Q that is $\frac{3}{4}$ of the way from P to Q.



Question 4.¹ Let \vec{u} and \vec{v} be vectors in \mathbb{R}^n . Given: $||\vec{u}|| = 5$, $||\vec{u} + 2\vec{v}|| = \sqrt{2}$, \vec{v} and $\vec{u} + 3\vec{v}$ are both unit vectors, and the angle between $\vec{u} + 2\vec{v}$ and $\vec{u} + 3\vec{v}$ is $\pi/4$.

- a. (3 marks) Find $\vec{u} \cdot \vec{v}$.
- b. (2 marks) Find $||\vec{u} + \vec{v}||$.

a)

$$(\underline{u} + 2\underline{v}) \cdot (\underline{u} + 3\underline{v}) = ||\underline{u} + 2\underline{v}|||\underline{u} + 3\underline{v}||\cos s \frac{\pi}{4}$$

$$\underline{u} \cdot \underline{u} + \underline{u} \cdot (3\underline{v}) + (2\underline{v}) \cdot \underline{u} + (\underline{u}\underline{v}) \cdot (\underline{s}\underline{v}) = \sqrt{2} \cdot 1 \frac{1}{\underline{v}_{2}}$$

$$||\underline{u}||^{2} + 3\underline{u} \cdot \underline{v} + 2\underline{v} \cdot \underline{u} + 6\underline{v} \cdot \underline{v} = 1$$

$$5^{2} + 5\underline{u} \cdot \underline{v} + 6||\underline{v}||^{2} = 1$$

$$5\underline{u} \cdot \underline{v} = -24 - 6(1)^{2}$$

$$5\underline{u} \cdot \underline{v} = -30$$

$$\underline{u} \cdot \underline{v} = -30$$

$$\underline{u} \cdot \underline{v} = -6$$
b)

$$||\underline{u} + \underline{v}||^{2} = (\underline{u} + \underline{v}) \cdot (\underline{u} + \underline{v})$$

$$= ||\underline{v} \cdot \underline{u} + \underline{v} \cdot \underline{u} + \underline{u} \cdot \underline{v} + \underline{v} \cdot \underline{v}$$

$$= ||\underline{u}||^{2} + 2\underline{u} \cdot \underline{v} + ||\underline{v}||^{2}$$

$$= 5^{2} + 2(-6) + 1^{2}$$

$$= 25 - 12 + 1$$

$$= 14$$

$$\circ_{0}^{2} ||\underline{u} + \underline{v}|| = \sqrt{44}$$

¹From or modified from a John Abbott final examination