Dawson College: Linear Algebra (SCIENCE): 201-NYC-05-S8: Winter 2025: Quiz 8

name: _

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (5 marks) Let V and W be subspaces of \mathbb{R}^2 that are spanned by (3, 1) and (2, 1), respectively. Find a vector **v** in V and a vector **w** in W for which $\mathbf{v} + \mathbf{w} = (3, 5)$.

Question 2. (5 marks) Prove that if $\{v_1, v_2\}$ is linearly independent and v_3 does not lie in span $\{v_1, v_2\}$, then $\{v_1, v_2, v_3\}$ is linearly independent.

Question 3. Let *W* be the subspace of all polyomials in \mathbb{P}_3 such that p(1) = 0

- a. (4 marks) Find a basis \mathscr{B} of W.
- b. (1.5 marks) State dim (\mathbb{P}_3), dim (W), and dim ($\{0 + 0x + 0x^2 + 0x^3\}$).
- c. (1 mark) Find the coordinate vector of $p(x) = 1 + x + x^2 3x^3$ relative to the basis found in part a.

Question 4. (3.5 marks) Determine whether the following statement is true or false. If the statement is false provide a counterexample. If the statement is true provide a proof of the statement.

Every basis of \mathbb{P}_4 contains at least one polynomial of degree 3 or less.

Bonus. (1 mark) State your favorite proof in Linear Algebra.