

Books, watches, notes or cell phones are **not** allowed. The **only** calculators allowed are the Sharp EL-531**. You **must** show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

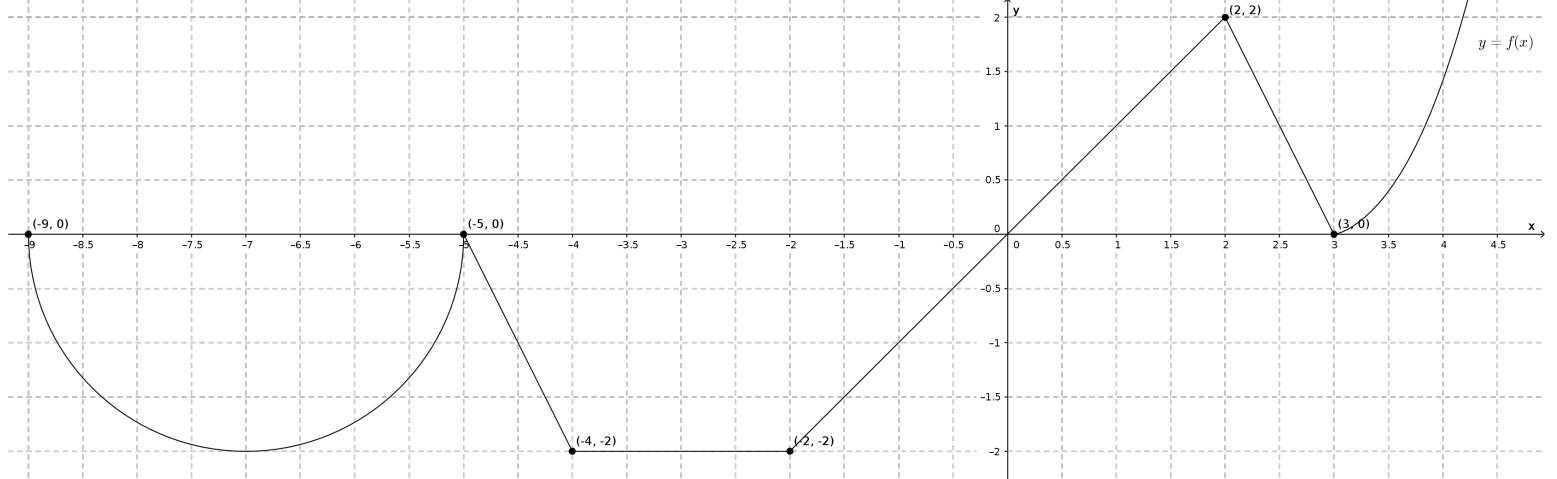
Formulae: $\sum_{i=1}^n c = cn$ where c is a constant $\sum_{i=1}^n i = \frac{n(n+1)}{2}$ $\sum_{i=1}^n i^2 = \frac{n(n+1)(2n+1)}{6}$ $\sum_{i=1}^n i^3 = \frac{n^2(n+1)^2}{4}$

Question 1. (1 mark each) Complete each of the following sentences with MUST, MIGHT, or CANNOT.

- Linear Algebra II _____ be extremely fun.
- Suppose $f(x)$ is integrable then $f(x)$ _____ be continuous.
- $\int_a^b f(x) dx$ _____ be equal to $\lim_{n \rightarrow \infty} \sum_{i=1}^n f(x_i) \Delta x$ where $\Delta x = (b-a)/n$ and $x_i = a + i\Delta x$ if $f(x)$ is integrable.
- $\int_a^b f(x) dx$ _____ be equal to $\int_b^a -f(\alpha) d\alpha$ if $f(x)$ is integrable.

Question 2. (2 marks) Suppose $f(x)$ is integrable on $[a, b]$ and $c \in \mathbb{R}$. Prove $\int_a^b cf(x) dx = c \int_a^b f(x) dx$.

Question 2. The graph of $y = f(x)$ consists of straight lines, one semicircle and a curve on the interval $[3, \infty)$. In addition, $\int_4^3 9f(x) dx + 4 = 0$ and $\int_4^5 f(x) dx = 1$.



- (3 marks) Evaluate $\int_3^5 f(x) dx$.
- (5 marks) Evaluate $\lim_{n \rightarrow \infty} \sum_{i=1}^n (i/n + f(x_i)) \Delta x$ where $x_i = -7 + i\Delta x$ and $\Delta x = 3/n$.
- (2 marks) Sketch the function $g(x) = \int_{-2.5}^x f(t) dt$ on $[-2.5, -1.5]$, on the above graph, and label 3 key points.

Question 3. (5 marks) Find the average value of the function $f(x) = \frac{\sin x + \sin x \tan^2 x}{\sec^2 x}$ on $[-\pi/3, \pi/4]$.

Question 4. (5 marks) Given the function $f(x) = \int_{\arctan x}^{\pi/4} \frac{\tan(\tan t)}{\tan t} dt$. Find $f'(x)$ using the 2nd FTC presented in class and simplify completely. (Show all your work!)

Bonus Question. (2 marks) Using the definition of the derivative of a function $g'(x) = \lim_{h \rightarrow 0} \frac{g(x+h) - g(x)}{h}$ simplify $g'(x)$ into a single term where $g(x) = \int_a^x f(t) dt$