Dawson College: Linear Algebra and Vector Geometry: 201-SN4-RE-S6: Winter 2026: Quiz 1 name: Mﬂdn@LC;

Books, watches, notes or cell phones are not allowed. The only calculators allowed are the Sharp EL-531%**. You must show all your work, the correct answer is worth 1 mark the remaining marks are given for the work.

Question 1. (3 marks each) Determine whether the following statements are true or false. If a statement is false provide a counterexample. If it
is true provide a proof.

a. Consider a linear system with augmented matrix A. If the system has a unique solution, then in the reduced row echelon form of A every
column contains a leading 1.
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b. If the row echelon form of an augmented matrix contains a row of zeros, then the corresponding system has infinitely many solutions.
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Question 2. (3 marks) Find (if possible) conditions on a and b such that the system has no solution, exactly one solution, and infinitely many
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Question 3. (2 marks) Consider the following augmented matrix of a consistent linear system.

Find a row which can be removed from the augmented matrix to make a new system with two equations which has the same solution set. Justify.
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Question 4. (3 marks each) Each matrix below is in REF or RREF and represents an augmented matrix for a linear system. For each one,
determine whether the system has no solution, exactly one solution, or infinitely many solutions. When solutions exist, write the solution set.

a. (involving a parameter k)
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(State for which values of k the system is consistent, then give the solution set when it is consistent.)
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Question 5. (3 marks) Find the solution set of the following equation:
X1 —2x2+3x3+ Uxs = 6.

Also find the value of p such that (x,x3,x3,x4) = (1,0,1,2) is a particular solution.
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