

Question 1. (3 marks each) Determine whether the following statements are true or false. If a statement is false provide a counterexample. If it is true provide a proof.

a. Consider a linear system with augmented matrix A . If the system has a **unique** solution, then in the **reduced row echelon form** of A every column contains a leading 1.

False, $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ has a unique solution but no leading 1 in constant column.

b. If the **row echelon form** of an augmented matrix contains a row of zeros, then the corresponding system has infinitely many solutions.

False, $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ has a row of zeros but is inconsistent since $0x_1 = 1$ cannot be satisfied.

Question 2. (3 marks) Find (if possible) conditions on a and b such that the system has no solution, exactly one solution, and infinitely many solutions. Justify.

Two lines on the plane

$$\begin{cases} ax + 2y = 1 \\ bx + 4y = 2 \end{cases} \quad \begin{aligned} y &= -\frac{a}{2}x + \frac{1}{2} \\ y &= -\frac{b}{4}x + \frac{1}{2} \end{aligned} \quad \begin{aligned} \text{The } y\text{-intercepts of the lines are always the same.} \\ \text{so the system is always consistent because they} \\ \text{always have the intercept in common.} \end{aligned}$$

If $-\frac{a}{2} \neq -\frac{b}{4}$ or $2a \neq b$ then the two lines have different slopes and they intersect at the y -intercept only: \therefore a unique solution.

If $-\frac{a}{2} = -\frac{b}{4}$ or $2a = b$ then the two lines are identical and all their points of their graph are in common. \therefore infinitely many solutions.

Question 3. (2 marks) Consider the following augmented matrix of a consistent linear system.

$$\begin{bmatrix} 1 & -2 & 3 \\ 2 & -4 & 6 \\ -1 & 1 & 0 \end{bmatrix}$$

Find a row which can be removed from the augmented matrix to make a new system with two equations which has the **same solution set**. Justify.

The equations of row 1 and 2 $x - 2y = 3$ and $2x - 4y = 6$ are identical lines.

∴ removing row 1 or row 2 will not change the solution set.

$$\therefore \begin{bmatrix} 1 & -2 & 3 \\ -1 & 1 & 0 \end{bmatrix}$$

Question 4. (3 marks each) Each matrix below is in **REF** or **RREF** and represents an augmented matrix for a linear system. For each one, determine whether the system has **no solution**, **exactly one solution**, or **infinitely many solutions**. When solutions exist, write the **solution set**.

a. (involving a parameter k)

$\begin{bmatrix} 1 & 0 & 2 & -1 & 3 \\ 0 & 1 & -4 & 5 & -2 \\ 0 & 0 & 0 & 0 & k \end{bmatrix}$ If $k \neq 0$ then the system is inconsistent because of leading entry in constant column.

(State for which values of k the system is consistent, then give the solution set when it is consistent.)

$$\text{If } k=0, \text{ let } x_3 = s, s, t \in \mathbb{R} \Rightarrow x_1 = 3 - 2s + t \\ x_2 = -2 + 4s - 5t$$

$$\therefore (x_1, x_2, x_3, x_4) = (3 - 2s + t, -2 + 4s - 5t, s, t) \quad s, t \in \mathbb{R}$$

b.

$$\begin{bmatrix} 1 & 2 & -1 & 3 \\ 0 & 1 & 4 & -2 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

$$\begin{array}{l} \textcircled{1} \quad x_1 + 2x_2 - x_3 = 3 \\ \textcircled{2} \quad x_2 + 4x_3 = -2 \\ \textcircled{3} \quad x_3 = 5 \end{array}$$

$$\text{sub } \textcircled{3} \text{ into } \textcircled{2}: \quad x_2 + 4(5) = -2 \\ x_2 = -22 \quad \textcircled{4}$$

$$\begin{array}{l} \text{sub } \textcircled{3}, \textcircled{4} \text{ into } \textcircled{1} \\ x_1 + 2(-22) - (5) = 3 \\ x_1 = 52 \end{array}$$

$$\therefore (x_1, x_2, x_3) = (52, -22, 5)$$

Question 5. (3 marks) Find the solution set of the following equation:

$$x_1 - 2x_2 + 3x_3 + \mu x_4 = 6.$$

Also find the value of μ such that $(x_1, x_2, x_3, x_4) = (1, 0, 1, 2)$ is a particular solution.

$$\text{Let } x_1 = r$$

$$x_2 = s$$

$$x_3 = t$$

$$x_1 - 2x_2 + 3x_3 + \mu x_4 = 6 \\ x_1 = 6 + 2r - 3s - \mu t$$

$(1, 0, 1, 2)$ must satisfy the linear equation.

$$1 - 2(0) + 3(1) + \mu(2) = 6$$

$$\mu(2) = 2$$

$$\mu = 1$$

$$\therefore \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix} = \begin{pmatrix} 6 + 2r - 3s - \mu t \\ r \\ s \\ t \end{pmatrix} \quad r, s, t \in \mathbb{R}$$